
Week 5 - Wednesday

 What did we talk about last time?
 Key management

 What magic happens when you type your password into…
 Windows or Unix to log on?
 Amazon.com to make a purchase?
 A Cobra Kai fan site so that you can post on the forums?

 A genie from the 8th dimension travels back in time and
checks to see what password you originally created

 The password is checked against a file on a computer
 But, how safe is the whole process?
 Cobra Kai fan site may not be safe at all
 Amazon.com is complicated, much depends on the implementation

of public key cryptography
 What about your Windows or Unix computer?

 Your computer needs to be able read the password file to
check passwords

 But even an administrator shouldn't be able to read
everyone's passwords

 Hash functions to the rescue!

 A cryptographic (or one-way) hash function (called a
cryptographic checksum in the book) takes a variable sized
message M and produces a fixed-size hash code H(M)

 Not the same as hash functions from data structures
 The hash code produced is also called a digest
 It can be used to provide authentication of both the integrity

and the sender of a message
 It allows us to store some information about a message that

an attacker cannot use to recover the message

• Given a digest, should be hard to find a message
that would produce it

• One-way property

Preimage
Resistance

• Given a message m, it should be hard to find a
different message that has the same digest

Second Preimage
Resistance

• Should be hard to find any two messages that hash
to the same digest (collision)

Collision
Resistance

• A small change in input should correspond to a large change in
outputAvalanching

• Hash function should work on a block of data of any sizeApplicability

• Output should be a fixed length Uniformity

• It should be fast to compute a digest in software and hardware
• No longer than retrieval from secondary storageSpeed

 Message Digest Algorithm 5
 Very popular hashing algorithm
 Designed by Ron Rivest (of RSA fame)
 Digest size: 128 bits
 Security
 Completely broken
 Reasonable size attacks (232) exist to create two messages with the

same hash value
 MD5 hashes are still commonly used to check to see if a

download finished without error

 Secure Hash Algorithm
 Created by NIST
 SHA-0 was published in 1993, but it was replaced in 1995 by SHA-1
 The difference between the two is only a single bitwise rotation, but the NSA

said it was important
 Digest size: 160 bits
 Security
 Broken if you have the resources
 Theoretical attacks running in 251 - 257 time exist
 Google generated two PDF files with the same hash in just over 263 hashes in 2017

 SHA-2 is a successor family of hash functions
 224, 256, 384, 512 bit digests
 Much better security
 Designed by the NSA

 NIST had the contest for SHA-3 a few years ago
 It got down to five finalists:
 BLAKE
 Grøstl
 JH
 Keccak
 Skein

 Keccak was announced as the winner in 2012
 As with AES, Keccak beat out its competitors partly because it's so fast
 Joan Daemen (of Rijndael fame) was also one of its designers

 Keccak uses a completely different form of hashing than SHA-
0, SHA-1, and SHA-2

 Although the attacks on SHA-1 are expensive and no real
attacks exist on SHA-2, the attacks on SHA-0 made people
nervous about hash functions following the same design

 Keccak also allows for variable size digests, for added security
 224, 256, 384, and 512 are standard for SHA-3, but it is possible to go

arbitrarily high in Keccak

 Everyone stand up
 Sort yourselves using merge sort by birthday

 How many people do we need in the room so that two must
share a birthday?

 366 (well, 367, counting leap years)
 Pigeonhole principle
 This is the only way we can guarantee with 100% probability

that there is a collision

 What if we only want it to be really likely that two people
share a birthday?

 How many people do we need to have a 50/50 chance?
 Only 23!
 That's an excited 23, not 23 factorial

 The number of ways you can have no duplicate birthdays in a group of 𝑘𝑘
people:

365 · 364 � 363 … 365 − 𝑘𝑘 + 1 =
365!

365 − 𝑘𝑘 !

 To find the probability that there are no duplicate birthdays in a group of 𝑘𝑘
people, divide by all possible ways of assigning birthdays:

365!
365 − 𝑘𝑘 !

�
1

365𝑘𝑘
=

365!
365 − 𝑘𝑘 ! 365𝑘𝑘

 The probability that there is at least one duplicate is simply one minus this
quantity

People (k) Probability of Collision

10 12%

20 41%

23 50.7%

30 70%

40 89%

50 97%

100 99.99996%

 If we care about a group of 𝑘𝑘 items which can have a value
between 1 and 𝑛𝑛, the probability that two are the same is:

𝑃𝑃 𝑛𝑛, 𝑘𝑘 = 1 −
𝑛𝑛!

𝑛𝑛 − 𝑘𝑘 !𝑛𝑛𝑘𝑘

 Because this form is a little unwieldy, we have an
approximation that is easier to punch into a calculator:

𝑃𝑃 𝑛𝑛, 𝑘𝑘 > 1 − 𝑒𝑒
−𝑘𝑘(𝑘𝑘−1)

2𝑛𝑛

 If we want to find the number of items needed before there is greater than a 1
2

probability
of collision we get:

1
2 = 1 − 𝑒𝑒

−𝑘𝑘 𝑘𝑘−1
2𝑛𝑛

−
1
2 = −𝑒𝑒

−𝑘𝑘 𝑘𝑘−1
2𝑛𝑛

2 = 𝑒𝑒
𝑘𝑘 𝑘𝑘−1
2𝑛𝑛

ln 2 =
𝑘𝑘 𝑘𝑘 − 1

2𝑛𝑛

 For large 𝑘𝑘, 𝑘𝑘(𝑘𝑘 − 1) ≈ 𝑘𝑘2, giving:
𝑘𝑘 ≈ 2 ln 2 𝑛𝑛 ≈ 1.18 𝑛𝑛

 Attacks on hash functions
 Digital signatures
 Review for Exam 1
 Jennifer Perez presents

 Review Chapters 1, 2, and 12
 Finish Assignment 2
 Due Friday

 Start on Project 2

	COMP 4290
	Last time
	Questions?
	Assignment 2
	Project 2
	Samuel Costa Presents
	Hash Function Motivation
	Where do passwords go?
	In reality…
	Catch-22
	Hash Functions Defined
	Definition
	Crucial properties
	Additional properties
	Common Hash Functions
	MD5
	SHA family
	The future of hash functions
	Keccak (SHA-3)
	Birthday Paradox
	Activity
	Two people must share a birthday
	Probability that two people share a birthday
	Birthday paradox: the math
	Probabilities for groups of various sizes
	General case
	Count it up
	Upcoming
	Next time…
	Reminders

